
Klar Mini Pro Microscope

Your personal instrument for photoluminescence (PL) spectroscopy

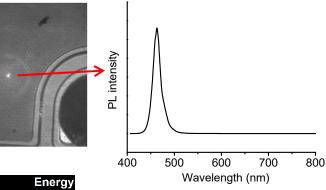
klarscientific.com

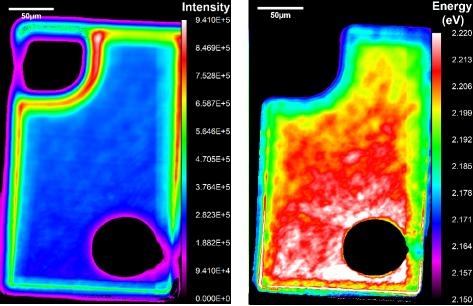
klar@klarscientific.com

Klar Scientific

A spectroscopic microscope for materials analysis

The **Klar Mini Pro** microscope is a compact, affordable instrument designed for scientists who need spectral information with high spatial resolution.


Mini Pro focuses a laser on the sample and a spectrometer collects the emitted light. The sample is scanned and PL spectra are obtained at each (x,y) point. The objective is adjusted in the *z* direction to maintain focus.


Millions of spectra can be taken this way. Analysis software rapidly determines the peak energy and intensity for each spectrum. This results in physically meaningful images with outstanding resolution and contrast.

The modular design enables researchers to quickly change wavelength ranges and experimental setups. In addition to PL, the microscope can be easily configured to take Raman and reflectivity spectra.

Highlights

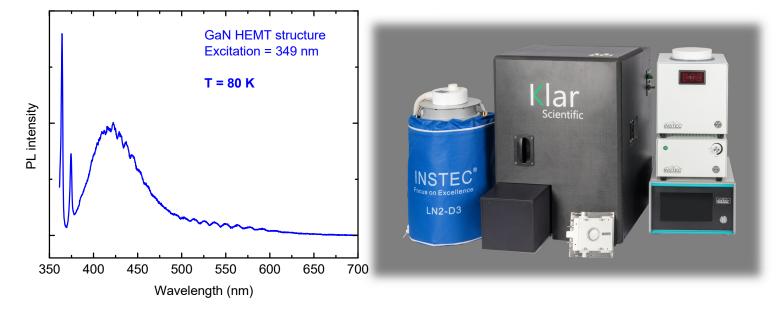
- Laser excitation 266–980 nm
- PL spectral range 200–1700 nm
- Submicron in-plane resolution
- Millions of spectra can be collected
- Fast peak-fitting software
- Compact (~1 sq ft)
- Enclosure insulates microscope from temperature variations, dust, light
- Affordable

PL maps of a green LED showing the intensity and peak energy of a defect emission. The measurement was taken through an epoxy bump.

Applications

- Defect identification in light-emitting diodes and lasers
- PL mapping of widebandgap semiconductors
- Luminescence of 2D
 materials
- Compositional analysis of semiconductor alloys
- Failure analysis and quality control

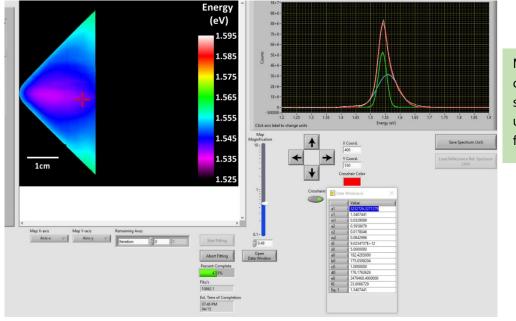
One microscope, many wavelengths


The Mini Pro's universal optical design allows the owner to expand capabilities with user-replaceable wavelength kits.

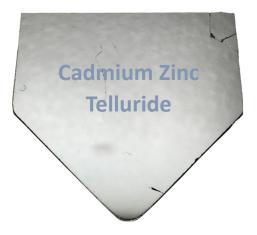
- Spectroscopy from the near-IR to the deep-UV (1700 – 266 nm).
- Change kits in 5 minutes or less.
- Custom kits available contact us for info.

Capabilities:

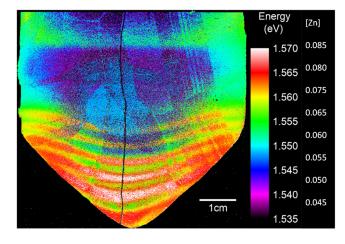
- Photoluminescence
- Raman
- X, Y, Z scanning
- Electroluminescence
- Low temperatures

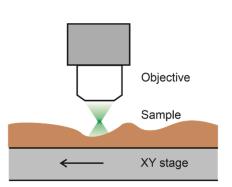


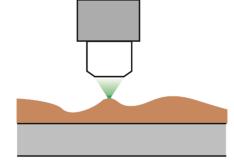
The low-temperature kit includes everything you need – dewar, pump, temperature controller, etc. – so you can start taking data right away.


GPU-accelerated analysis

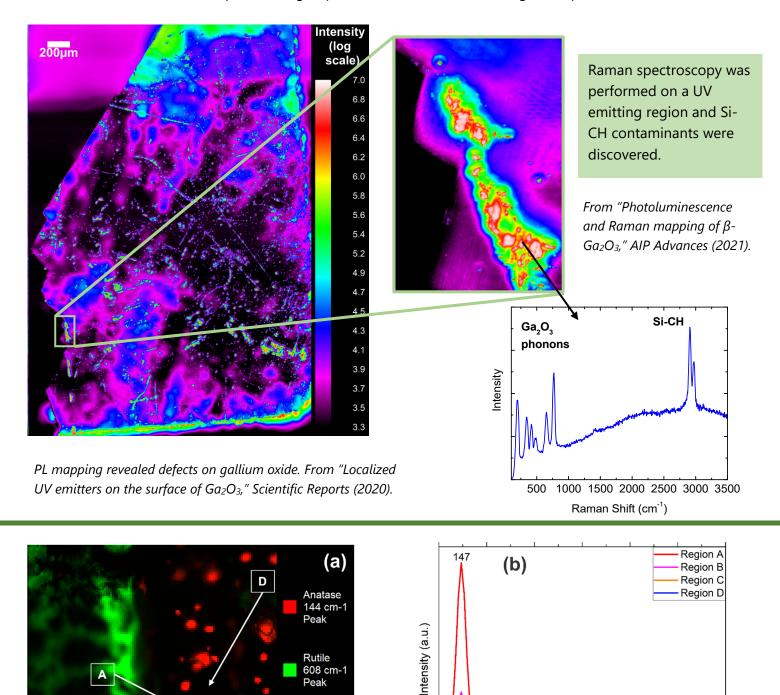
A PL map consists of lots of data – each x,y point has a spectrum. **Klar Fit** uses GPU-accelerated peak fitting to analyze spectra quickly. Millions of spectra can be fit in under an hour.


False color image plots a parameter for the selected peak (e.g., energy in eV).




Multiple peaks can be fit with standard or user-defined functions.

Peak analysis can reveal properties like composition. The figure on the right shows Zn content variations in CdZnTe.


Klar's patented **autofocus** technology keeps the laser spot focused on the sample, even it the surface is rough, tilted, or bowed.

Out of focus

In focus

PL and Raman with the same instrument

Obtain PL or Raman maps with high spatial resolution over a large sample area.

(a) Raman map of titania with regions of anatase, rutile, and amorphous phases. (b) Raman spectra of selected regions. From "Localized phase transition of TiO₂ thin films induced by sub-bandgap laser irradiation," J. Vac. Sci. Tech. A (2021).

Wavenumber (cm⁻¹)

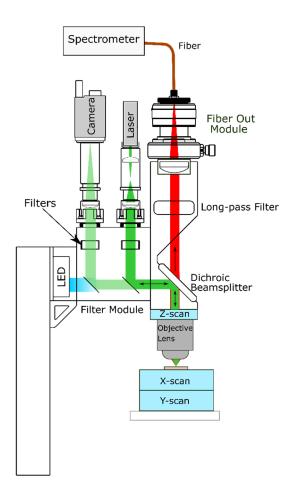
608 cm-1 Peak

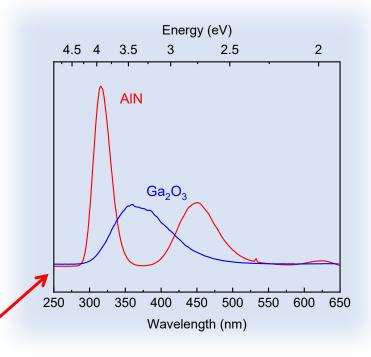
Specifications	
In-plane resolution	Laser spot radius is 0.35 μm for a 50x, NA 0.75
(405 nm excitation)	objective. Collected area is determined by the fiber
	diameter.
Sample XY scanner	5 or 10 mm travel range, 20 nm repeatability
Objective Z scanner	400 μm travel range, 5 nm repeatability
Acquisition time	At 10 ms integration time per spectrum,
	100 μm × 100 μm, 0.5 μm step size: 6 min
	5 mm × 5 mm, 50 μm step size: 2 min
	5 mm × 5 mm, 5 μm step size: 3 hr
Sample inspection	LED, monochrome camera
Software	Klar Spec acquisition, Klar Fit peak fitting and analysis
Electrical	120 V, 60 Hz input, USB 3.0 data connection
Dimensions and	43 cm × 38 cm × 58 cm, 14 kg
weight	(17 in x 15 in x 23 in, 30 lbs)

Wavelength kits are supplied as ready-to-use modules that require minimal setup. Custom kits and spectral ranges are available. Ocean spectrometers provide superb sensitivity.

Near IR	
Excitation source	975 nm laser, 30-100 mW
Spectrometer	NIRQuest+, 900-1700 nm
Nea	nr IR, Raman
Nea Excitation source	n r IR, Raman 785 nm laser, 250 mW
	· · ·

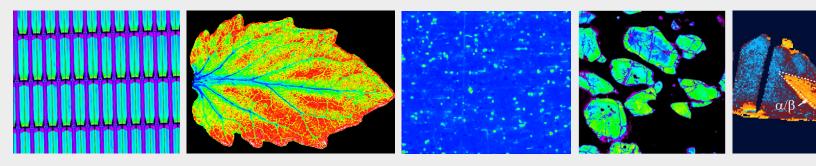
Red	
Excitation source	635 nm laser, 1-2 mW
Spectrometer	Maya Pro, 635-1060 nm


Green	
Excitation source	532 nm laser, 4-5 mW
Spectrometer	Maya Pro, 532-960 nm


Green, Raman	
Excitation source	532 nm laser, 30-140 mW
Spectrometer	QE Pro, 90-4000 cm ⁻¹

Violet	
Excitation source	405 nm laser, 1-2 mW
Spectrometer	Maya Pro, 405-840 nm

Near UV	
Excitation source	349 nm laser, 0-20 mW
Spectrometer	Maya Pro, 349-780 nm


Deep UV	
Excitation source	266 nm pulsed laser, 5
	mW average power
Spectrometer	Maya Pro, 266-700 nm

Spectroscopy from near-IR to deep-UV

klarscientific.com

1615 NE Eastgate Blvd, Suite G-3E Pullman, WA 99163 509-330-5560

klar@klarscientific.com